Aerosol indirect effect using a fast and accurate global aerosol microphysics model

- 1) Impacts of nucleation chemistry on cloud microphysical properties and cloud albedo forcing
- 2) Impacts of black carbon mitigation on aerosol indirect forcing

Yunha Lee NASA GISS lunch seminar

Aerosol indirect effects on Climate

- Brighter cloud = Cloud albedo effect (=1st indirect effect)
- Precipitation change = Cloud lifetime effect (=2nd indirect effect)

Intergovernmental Panel on Climate Change (IPCC)

Aerosol dynamics

Nucleation $D_p < ^10 nm$

Ultrafine D_p < ~100 nm

CCN $D_p > ^100 \text{ nm}$

Removal (Deposition/Coagulation)

Removal (Deposition/Coagulation)

(Deposition/ Coagulation)

Outlines

Cloud

Emissions

- 6) Soot
- Organic carbon
- Sulfate
- Sea-salt
- 1) <u>Dust</u>

5) Nucleation

- Binary
- Ternary

4)Nucleation mode dynamics

Aerosol size D_p

albedo

1 year simulation takes more than 2 months computing time

(Comprehensive but "slow")

rate

Model applications

- 5) Impacts of nucleation chemistry on cloud microphysical properties and aerosol indirect forcing
- 6) Impacts of black carbon mitigation on aerosol indirect forcing

Global Aerosol Microphysics Model

- Host model: Goddard Institute for Space Studies General Circulation Model II' (GISS GCM II')
- Aerosol species: Sulfate, Sea-salt, Carbonaceous, Mineral dust
- TwO-Moment Aerosol Sectional (TOMAS) algorithm
 - Moments: 1) <u>number</u> and 2) <u>mass</u>
 - 30 bins segregated by dry mass per particle
- Processes: Condensation, Coagulation, Nucleation, Cloud processing

TOMAS 30/15/12 configurations

Reducing size resolution				
TOMAS-30	10 bins	10 bins	10 bins	
TOMAS-15	5 bins	5 bins	5 bins	
TOMAS-12	5 bins	5 bins	2 bins	
0.01 μ m 0.1 μ m 1 μ m 10 μ m				

Number of size bins	Simulation time for a year*	
TOMAS-30	60 days	
TOMAS-15	26 days	
TOMAS-12	18.5 days	

* Based on a single processor in SGI ORIGIN 2000

Cloud formation and activation

Activation parameterization: "Population Splitting"

(Obtained from Dr. Nenes in Georgia Tech)

How: Solve the algebraic equation for S_{max} (numerically)

Input: P,T, updraft velocity (cooling rate), RH, aerosol characteristics.

Output: Cloud droplet number concentration (CDNC), S_{max}

$$\frac{dS}{dt} = \quad \text{Cooling rate - Water vapor condensation} \\ \quad \quad \text{At S}_{\text{max}}, \ dS/\text{dt} = 0$$

Cooling rate = Water vapor condensation

Kinetically limited CCN

Recently activated CCN

Four autoconversion parameterizations:

- ■F(*LWC*, *CDNC*) **KK** [Khairoutdinov and Kogan, 2000] & **MC** [Manton and Cotton, 1977]
- F(*LWC*, *CDNC*, *dispersion*) **BH** [Beheng, 1994] & **P6** [Liu and Daum, 2004]

Autoconversion parameterizations

Names	s Inputs	References	Autoconversion rate [kg m ⁻³ s ⁻¹]	
SD	LWC	Sundqvist [1989]	SD: CDNC ⁰	
MC	CDNC, LWC	Manton and Cotton [1977]	MC: CDNC ^{-1/3}	١
KK	CDNC, LWC	Khairoutdinov and Kogan [2000]	KK: CDNC ^{-1.79}	
P6 CDNC, LWC, dispersion Liu and Daum [2004]		persion Liu and Daum [2004]	P6: CDNC ^{-1.0}	
BH CDNC, LWC, dispersion Beheng [1994]		spersion Beheng [1994]	BH: CDNC ^{-3.3}	

Impacts of nucleation on cloud microphysical properties and aerosol indirect forcing

Model application 1

Nucleation uncertainty

- Several proposed nucleation mechanisms
 - Binary (H₂SO₄-H₂O)
 - Ternary (H₂SO₄-NH₃-H₂O)
 - Ion-induced nucleation (also involves H₂SO₄)
- Nucleation rates vary by orders of magnitude
- How does this nucleation uncertainty affect CDNC and aerosol indirect forcing?

Nucleation and CCN

Simulations	Emission scenario	Nucleation scheme
BINARY-PD	Present-day	Binary
BINARY-PI	Preindustrial	Binary
TERNARY-PD	Present-day	Ternary
TERNARY-PI	Preindustrial	Ternary

- Binary (Vehkamäki et al., 2002): a lower bound of nucleation rate
- Ternary (Napari et al., 2002): a upper bound of nucleation rate

First vertical layer CDNC ratio

.95

Present-day

Preindustrial

Cloud albedo forcing

Autoconversion rate

Will black carbon mitigation dampen aerosol indirect forcing?

Policy implication

Collaborators: John Seinfeld/Wei-Ting (Anne) Chen (Caltech); Athanasios Nenes (GaTech)

Publication: W.-T. Chen, Y. H. Lee, P. J. Adams, A. Nenes, and J.H. Seinfeld (2010). Will black carbon mitigation dampen aerosol indirect forcing? *Geophysical Research Letters*

Application: Black Carbon as Climate Mitigation?

Cooling Warming **Sunlight Absorption Cloud Brightening Cloud Burnoff** Co-emitted Reflectors Snow/Ice Darkening Kuwaiti oil fires (photo

courtesy of Jay Apt)

- Black carbon ("soot")
 controls have been
 proposed for inclusion
 in climate change
 treaties
- (Somewhat)
 quantified warming
 effects
- Offsetting cooling effects largely not studied

Black Carbon Reductions

Scenarios:

- Base case
- 50% FF: reduce fossil fuel emissions by 50% (EC, OM, Number)
- 50% CARB: reduce all carbonaceous emissions by
 50%

Scenarios:

- Base case
- 50% FF: reduce fossil fuel emissions by 50% (EC, OM, Number)
- 50% CARB: reduce all carbonaceous emissions by 50%

BC Controls Reduce CDNC

Soot Reductions: Forcing Assessment

Present Emissions 50% Fossil-fuel Soot Change due to Soot Mitigation

Conclusions

- The uncertainty in nucleation chemistry to cloud microphysical properties and indirect forcing is assessed.
 - Some regions, CDNC and cloud albedo forcing is sensitive to nucleation scheme.
 - The result is sensitive to how CDNC is calculated (online vs. offline)
- The impact of black carbon mitigation to aerosol indirect forcing is investigated.
 - CCN impacts of reducing black carbon appear to offset a large fraction of climate benefits

Acknowledgement

- Peter J. Adams
- Jeff Pierce
- Athanosis Nenes